Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We uncover late-time gravitational-wave tails in fully nonlinear dimensional numerical relativity simulations of merging black holes, using the highly accurate p code. We achieve this result by exploiting the strong magnification of late-time tails due to binary eccentricity, recently observed in perturbative evolutions, and showcase here the tail presence in head-on configurations for several mass ratios close to unity. We validate the result through a large battery of numerical tests and detailed comparison with a perturbative evolution, which display striking agreement with full nonlinear ones in the ringdown regime, and very similar tail morphologies. Our results offer yet another confirmation of the highly predictive power of black hole perturbation theory in the presence of a source, even when applied to nonlinear solutions. The late-time tail signal is much more prominent than anticipated until recently, and possibly within reach of gravitational-wave detector measurements, unlocking observational investigations of an additional set of general relativistic predictions on the long-range gravitational dynamics.more » « lessFree, publicly-accessible full text available October 1, 2026
-
Abstract Understanding the details ofr-process nucleosynthesis in binary neutron star merger (BNSM) ejecta is key to interpreting kilonova observations and identifying the role of BNSMs in the origin of heavy elements. We present a self-consistent, two-dimensional, ray-by-ray radiation-hydrodynamic evolution of BNSM ejecta with an online nuclear network (NN) up to a timescale of days. For the first time, an initial numerical relativity ejecta profile composed of the dynamical component and spiral-wave and disk winds is evolved including detailedr-process reactions and nuclear heating effects. A simple model for the jet energy deposition is also included. Our simulation highlights that the common approach of relating in postprocessing the final nucleosynthesis yields to the initial thermodynamic profile of the ejecta can lead to inaccurate predictions. Moreover, we find that neglecting the details of the radiation-hydrodynamic evolution of the ejecta in nuclear calculations can introduce deviations of up to 1 order of magnitude in the final abundances of several elements, including very light and secondr-process peak elements. The presence of a jet affects element production only in the innermost part of the polar ejecta, and it does not alter the global nucleosynthesis results. Overall, our analysis shows that employing an online NN improves the reliability of nucleosynthesis and kilonova light-curve predictions.more » « less
-
We present a Bayesian framework for joint and coherent analyses of multimessenger binary neutron star signals. The method, implemented in our bajes infrastructure, incorporates a joint likelihood for multiple datasets, support for various semi-analytical kilonova models and numerical-relativity (NR) informed relations for the mass ejecta, as well as a technique to include and marginalize over modeling uncertainties. As a first application, we analyze the gravitational-wave GW170817 and the kilonova AT2017gfo data. These results are then combined with the most recent X-ray pulsars analyses of PSR J0030+0451 and PSR J0740+6620 to obtain EOS constraints.Various constraints on the mass-radius diagram and neutron star properties are then obtained by resampling over a set of ten million parametrized EOS built under minimal assumptions. We find that a joint and coherent approach improves the inference of the extrinsic parameters (distance) and, among the instrinc parameters, the mass ratio. The inclusion of NR informed relations strongly improves over the case of using an agnostic prior on the intrinsic parameters. Comparing Bayes factors, we find that the two observations are better explained by the common source hypothesis only by assuming NR-informed relations. These relations break some of the degeneracies in the employed kN models. The EOS inference folding-in PSR J0952-0607 minimum-maximum mass, PSR J0030+0451 and PSR J0740+6620 data constrains, among other quantities, the neutron star radius to R1.4=12.30−0.56+0.81R1.4=12.30−0.56+0.81 km (R1.4=13.20−0.90+0.91R1.4=13.20−0.90+0.91 km) and the maximum mass to Mmax=2.28−0.17+0.25 M⊙Mmax=2.28−0.17+0.25 M⊙ (Mmax=2.32−0.19+0.30 M⊙Mmax=2.32−0.19+0.30 M⊙) where the ST+PDT (PDT-U) analysis of Vinciguerra et a (2023) for PSR J0030+0451 is employed. Hence, the systematics on PSR J0030+0451 data reduction currently dominate the mass-radius diagram constraints.more » « less
-
Abstract We study mass ejection from a binary neutron star merger producing a long-lived massive neutron star remnant with general-relativistic neutrino-radiation hydrodynamics simulations. In addition to outflows generated by shocks and tidal torques during and shortly after the merger, we observe the appearance of a wind driven by spiral density waves in the disk. This spiral-wave-driven outflow is predominantly located close to the disk orbital plane and have a broad distribution of electron fractions. At higher latitudes, a high electron-fraction wind is driven by neutrino radiation. The combined nucleosynthesis yields from all the ejecta components is in good agreement with Solar abundance measurements.more » « less
-
Abstract This study investigates the origins of GW230529, delving into its formation from massive stars within isolated binary systems. Utilizing population-synthesis models, we present compelling evidence that the neutron star component forms second. However, the event’s low signal-to-noise ratio introduces complexities in identifying the underlying physical mechanisms driving its formation. Augmenting our analysis with insights from numerical relativity, we estimate the final black hole mass and spin to be approximately 5.3M⊙and 0.53, respectively. Furthermore, we employ the obtained posterior samples to calculate the ejecta mass and kilonova light curves resulting fromr-process nucleosynthesis. We find the ejecta mass to be within 0–0.06M⊙, contingent on the neutron star equation of state. The peak brightness of the kilonova light curves indicates that targeted follow-up observations with a Rubin-like observatory may have detected this emission.more » « less
An official website of the United States government
